Telegram Group & Telegram Channel
Еще недавно сложно было представить, что я буду постить ссылки на разработки Сбера, но с моей колокольни кажется, что в русскоязычном ML-коммьюнити по влиянию сейчас их опережает только Яндекс, причем разрыв стремительно сокращается. Так вот, я хотел обратить внимание уважаемых читателей на pytorch-lifestream - библиотеку для создания ембеддингов для из последовательностей евентов.

Я сам этой библиотекой не пользовался и в ближайшее время не планирую, мои задачи все больше из другого домена. Но концептуально подход мне кажется очень правильным. Более того, в последнее время я все больше верю, что почти весь прикладной ML сведется к сочетанию относительно сложного representation learning и простых моделей (линейных, kNN, cosine similarity) поверх этих representations. Это в свою очередь приведет к масштабируемому разделению обязанностей: core ML команда будет пилить те самые волшебные representations, а инженеры в продуктовых командах будут учить регрессию на этих фичах.

Мои вера основана на таких наблюдениях:

1) self-supervised и contrastive методы начали прилично работать в разных доменах и модальностях, в т.ч. мультимодально (самый популярный пример - CLIP);
2) архитектуры в разных задачах все больше сближаются (см. восхищение трансформерами в твиттере Карпатого)
3) деплоить и поддерживать такие модели становится проще, чем “классический” ML (всякие бустинги и ручные фичи).



tg-me.com/partially_unsupervised/141
Create:
Last Update:

Еще недавно сложно было представить, что я буду постить ссылки на разработки Сбера, но с моей колокольни кажется, что в русскоязычном ML-коммьюнити по влиянию сейчас их опережает только Яндекс, причем разрыв стремительно сокращается. Так вот, я хотел обратить внимание уважаемых читателей на pytorch-lifestream - библиотеку для создания ембеддингов для из последовательностей евентов.

Я сам этой библиотекой не пользовался и в ближайшее время не планирую, мои задачи все больше из другого домена. Но концептуально подход мне кажется очень правильным. Более того, в последнее время я все больше верю, что почти весь прикладной ML сведется к сочетанию относительно сложного representation learning и простых моделей (линейных, kNN, cosine similarity) поверх этих representations. Это в свою очередь приведет к масштабируемому разделению обязанностей: core ML команда будет пилить те самые волшебные representations, а инженеры в продуктовых командах будут учить регрессию на этих фичах.

Мои вера основана на таких наблюдениях:

1) self-supervised и contrastive методы начали прилично работать в разных доменах и модальностях, в т.ч. мультимодально (самый популярный пример - CLIP);
2) архитектуры в разных задачах все больше сближаются (см. восхищение трансформерами в твиттере Карпатого)
3) деплоить и поддерживать такие модели становится проще, чем “классический” ML (всякие бустинги и ручные фичи).

BY partially unsupervised


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/partially_unsupervised/141

View MORE
Open in Telegram


partially unsupervised Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

partially unsupervised from kr


Telegram partially unsupervised
FROM USA